Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping
نویسندگان
چکیده
An increasing demand for full spatio-temporal coverage of soil information drives the growing use of soil spectroscopy. Soil spectroscopy application performed under laboratory conditions or in-field studies in semi-arid areas have shown promising results. However, when acquiring data in temperate zones, limitations by vegetation-free coverage, variation in soil moisture and management are driving coherent spatio-temporal data collection. This study explores the use of multi-temporal imaging spectroscopy data to increase the total mapping area of bare soils in a heterogeneous agricultural landscape. Spectrally and spatially high-resolution data from the Airborne Prism Experiment (APEX) were collected in September 2013, April 2014 and April 2015. Bare soils in all acquisitions were identified. To eliminate short-term differences in soil moisture and soil surface roughness, the empirical line method was used to calibrate the reflectance values of the singular images (2013 and 2015) towards the singular image with most bare soil pixels (2014). Difference indicators show that the calibration was successful (decrease in root mean square difference and angle difference, increase in R2 and gain and offset close to one and zero). Finally, the multi-temporal composite image contained more than double the amount of bare soil pixels as compared to a singular acquisition. Summary statistics show that reflectance values of the multi-temporal composite approximate the single image data of 2014 (mean and standard deviation of 2014: 24.2 ± 8.9 vs. 24.0 ± 9.5 for the multi-temporal composite of 2013, 2014 and 2015). This indicates that global differences in soil moisture and land management have been corrected for. As a result, an improved spatial representation of soil parameters can be retrieved from the composite data. Spatial distribution of the correction factors and analysis of the spatial variability of all images, however, indicate that non-linear, short-term differences like variation in soil moisture and land management largely influence the result of the multi-temporal composite. Quantification and attribution of those factors will be required in the future to allow correcting for them.
منابع مشابه
Derivation of soil surface dynamics from multi-temporal airborne POLSAR data
In this Paper the potential of multi-temporal PolSARdata for soil surface roughness estimation is investigated. The study utilizes microwave backscatter collected from the Demmin test-site in the North-East Germany during the whole agri-phenological cycle in 2006 using quad-pol L-Band SLC E-SAR data. For ground truthing soil surface roughness were measured using photogrammetric imaging techniqu...
متن کاملA Multi-Sensor Approach for High Resolution Airborne Soil Moisture Mapping
Airborne remote sensing provides a viable option for high resolution mapping of nearsurface soil moisture that allows larger areas to be covered in greater spatial and temporal detail than has hereto been possible from traditional ground based techniques. However, the current retrieval algorithms require information on near-surface soil temperature and vegetation water content in order to estim...
متن کاملEvaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping
In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...
متن کاملPrediction of Common Surface Soil Properties Based on Vis-NIR Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction Accuracy and Influence of Spatial Resolution
With the upcoming availability of the next generation of high quality orbiting hyperspectral sensors, a major step toward improved regional soil mapping and monitoring and delivery of quantitative soil maps is expected. This study focuses on the determination of the prediction accuracy of spectral models for the mapping of common soil properties based on upcoming EnMAP (Environmental Mapping an...
متن کاملSubsidence Detection Using Integrated Multi Temporal Airborne Imagery
Multi temporal aerial photography and airborne hyper spectral imagery have been integrated for the detection and monitoring of coal mining subsidence hazards. Digital elevation models derived from successive epochs of aerial photography provide estimates of topographic change which may be indicative of the collapse of abandoned underground mine workings in the study area. Ground disturbed by su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016